To help personalise content, tailor your experience and help us improve our services, uses cookies.
By navigating our site, you agree to allow us to use cookies, in accordance with our Privacy Policy.

Mitsubishi Electric Develops Compact GAN


Mitsubishi Electric Corporation announced that it has developed a compact GAN (Generative Adversarial Network) based on Mitsubishi Electric’s proprietary Maisart artificial intelligence (AI) technology. GANs derive from a new machine learning technology that synthesizes photo-realistic images by making two AIs—a generator and a discriminator—compete with each other. The computational complexity and memory footprint of the compact GAN is about one-tenth that of a conventional GAN, a property which enables effective synthesis of the enormous number of images used for the training of other AIs.

Mitsubishi Electric Corporation
Overview of GAN and the developed algorithm

The Key Features of the GAN include:

1) Reduces the computational complexity and memory footprint of the generator by 90 percent

With a GAN, the AI that synthesizes images is called a generator and is often realized using a deep neural network requiring significant computational resources and memory. Mitsubishi Electric has developed a novel algorithm that evaluates the significance of each layer in deep neural networks. By removing layers evaluated to be insignificant, the computational cost and memory footprint of the generator can be reduced to about one-tenth of their conventional size without sacrificing the quality of the synthesized images.

2) Reduces cost of preparing training images for AIs

Training AI to recognize images requires access to millions or tens of millions of images with diverse variations – one of the biggest challenges of current AI applications, since such data preparation is hugely costly in terms of the time and human resources required. The new compact GAN can synthesize images automatically and rapidly using low-cost devices such as laptops, potentially leading to a significant reduction in the cost of preparing training images for AIs.

Web for Mitsubishi Electric, Click here

Show More

Related Articles