By navigating our site, you agree to allow us to use cookies, in accordance with our Privacy Policy.

Boosting Performance in 48V Power Distribution

Author: Phil Davies

Power distribution networks (PDNs) are the backbone of any power system. As system power demands rise, traditional PDNs are under tremendous pressure to deliver enough performance. There are two main ways to improve PDN impact on power system performance with regards to power losses and thermal management. Option one, reduce the PDN resistance with larger cables, connectors and thicker motherboard power planes; or option two, boost the PDN voltage to reduce its current for a given power delivery, which can allow use of smaller cables, connectors, motherboard copper planes and their associated size, cost and weight.

Figure 1
Figure 1 The ideal point-of-load power system. A regulator delivers top efficiency when VIN = VOUT.;maximum efficiency comes when high-current delivery is closest to the point-of-load, minimizing I2R losses

For many years engineers have used option one for compatibility with the large ecosystem built up over decades for single-phase ac and 12V DC-DC converters and regulators. Other reasons include the lack of performance of DC-DC converter topologies that could efficiently convert higher voltages to PoL (point-of-load) directly and the associated expense of these higher-voltage converters and regulators. However, modern-day power designs increasingly use option two, higher PDN voltage. This trend is driven by the significant rise in system load power. In the case of data centers, the addition of artificial intelligence (AI), machine learning, and deep learning has caused rack power to soar by a factor of two into the 20kW range; and supercomputer server racks are now approaching 100kW or more.

To Read Full Article Please Fill Some Details

Related Articles