CEA-Leti Announces High-Performance Gyroscope Operating in Harsh Conditions
CEA-Leti scientists, along with researchers at Politecnico di Milano have established the world’s first high-performance gyroscope for operating in severe environments, such as industrial and aeronautic equipment and automobiles. The breakthrough proves it is possible to detect minute rotational movement even among system vibrations.
In collaboration with Politecnico di Milano, CEA-Leti researchers overcame this distortion by developing a gyroscope that operates at frequencies in the order of 50 kHz, which is more than two times higher than the capability of conventional MEMS gyroscopes and beyond the frequencies of vibrations common even in severe automotive, industrial and aeronautic settings.
“To increase the gyroscope’s operating frequency without reducing sensor performance, CEA-Leti and POLIMI researchers replaced the capacitive detection of MEMS gyroscopes with ultra-sensitive piezoresistive nano-gauges,” said Philippe Robert, MEMS business development manager and senior expert at CEA-Leti. “This new 1.5 mm² high-frequency gyroscope, protected by numerous patents, has characteristics that exceed the state of the art in terms of bias, noise, linearity and other conditions.”
“I have been working on several MEMS technologies for the last 15 years, and for sure the advantages of M&NEMS technology are outstanding for several future applications”, said Giacomo Langfelder, head of the MEMS and Microsensors laboratory at the Department of Electronics, Information Technology and Bioengineering of Politecnico di Milano.
The breakthrough was reported in a paper titled “50kHz MEMS gyroscopes based on NEMS sensing with 1.3 mdps/√Hz ARW and 0.5°/h stability” at IEEE SENSORS 2020.
“While various applications are requiring improved robustness to vibrations beyond 20 kHz, state-of-the-art gyroscopes are still operating around this frequency value due to a performance worsening which arises with frequency increase,” the paper reported. “This work proves that NEMS-based gyroscopes can be designed at larger operating frequencies … holding outstanding performance in terms of noise, stability and spurious modes for the considered footprint and (power) consumption.”
These new devices, which have been manufactured on CEA-Leti’s silicon pilot line, are compatible with processes of most MEMS foundries. Their fabrication is based on the M&NEMS technological platform that, depending on needs, allows the gyroscopes to be co-integrated with a 3-axis accelerometer and/or a high-performance pressure sensor, on a single chip.