By navigating our site, you agree to allow us to use cookies, in accordance with our Privacy Policy.

CEA-Leti Presents High-Performance Processor at ISSCC 2020

Leti and List, institutes of CEA, reported a high-performance processor breakthrough using an active interposer as a modular and energy- efficient integration platform solution that enables efficient integration of large-scale chiplet-based computing systems such as high-performance computing (HPC) and big-data applications.

CEAA high level of performance in HPC and big-data technologies requires modular, scalable, energy-efficient, low-cost many-core systems.

To scale out the architecture, existing techniques using 3D integration and chiplet partitioning with large-scale interposers were designed for building large modular architectures and achieving cost reduction in advanced technologies by known-good-die (KGD) strategy and yield management.

Large-scale interposer techniques for chiplet integration have been fabricated using various technologies, such as 2.5D passive interposers, organic substrates, and silicon bridges. But these technologies lack flexible long-distance chiplet-to-chiplet communications to connect a larger number of chiplets. They also lack smooth integration of heterogeneous chiplets, and the easy integration of less-scalable functions such as tightly coupled power-management solutions, analog functions and IO IPs.

In the framework of IRT Nanoelec, CEA-Leti and List overcame these limitations by introducing  an active-interposer technology that enables integration of some active CMOS circuitry on a large-scale interposer. They also managed its implementation on a STMicroelectronics process using a 3D CAD tool design flow from Mentor Graphics, a Siemens business.

“This is a breakthrough in terms of system-and-architecture integration, achieved all the way from the architecture concept down to a silicon prototype,” said Pascal Vivet, lead author of the paper. “In addition, 3D technology and associated design techniques now are available to implement large-scale computing systems, offering for the first time a chiplet-based 96-core computing architecture.”

Vivet explained that the active interposer integrates flexible and distributed interconnects, 3D-plug communication IP, and power management IP to offer overall a fully integrated and energy-efficient many-core computing architecture. As a result, users will get more GOPS at the same power budget – or a reduced energy footprint for the same task – and will benefit from an increased memory-computing ratio along the memory hierarchy.  These are main drivers to address big data applications.

“Active interposer technology will also be an enabler to integrate heterogeneous functions,” Vivet said. “Chiplet-based ecosystems will deploy rapidly in high-performance computing and various other market segments, such as embedded HPC for the automotive and other sectors.

“The active interposers also create opportunities to revisit system partitioning and implement extra functions at the interposer level. The ecosystem collaborated to build future 3D technology platforms that will benefit from CEA technologies to create major differentiators in future work,” Vivet said.

For more info, click here


Nitisha Dubey

I am a Journalist with a post graduate degree in Journalism & Mass Communication. I love reading non-fiction books, exploring different destinations and varieties of cuisines. Biographies and historical movies are few favourites.

Related Articles

Upcoming Events