To help personalise content, tailor your experience and help us improve our services, Bisinfotech.com uses cookies.
By navigating our site, you agree to allow us to use cookies, in accordance with our Privacy Policy.

Breakthrough! Double Doping Paves Way for Organic Electronics

Organic Electronics

Researchers make a noble breakthrough to tweak the efficiency of organic electronics. En-route to discreet silicon one of the prominent inorganic semiconductors, the new discovery from Researchers from Chalmers University of Technology, Sweden have found ways to dope the organic materials, like carbon-based semiconductors. This doping process is similarly of extreme importance.

OLED-displays are one example which is already on the market, for example in the latest generation of smartphones. Other applications have not yet been fully realised, due in part to the fact that organic semiconductors have so far not been efficient enough.

Doping in organic semiconductors operates through what is known as a redox reaction. This means that a dopant molecule receives an electron from the semiconductor, increasing the electrical conductivity of the semiconductor. The more dopant molecules that the semiconductor can react with, the higher the conductivity — at least up to a certain limit, after which the conductivity decreases. Currently, the efficiency limit of doped organic semiconductors has been determined by the fact that the dopant molecules have only been able to exchange one electron each.

But now, in an article in the scientific journal Nature Materials, Professor Christian Müller and his group, together with colleagues from seven other universities demonstrate that it is possible to move two electrons to every dopant molecule.

“Through this ‘double doping’ process, the semiconductor can, therefore, become twice as effective,” says David Kiefer, PhD student in the group and first author of the article.

According to Christian Müller, this innovation is not built on some great technical achievement. Instead, it is simply a case of seeing what others have not seen.

“The whole research field has been totally focused on studying materials which only allow one redox reaction per molecule. We chose to look at a different type of polymer, with lower ionisation energy. We saw that this material allowed the transfer of two electrons to the dopant molecule. It is actually very simple,” said Christian Müller, Professor of Polymer Science at Chalmers University of Technology.

The discovery could allow further improvements to technologies which today are not competitive enough to make it to market. One problem is that polymers simply do not conduct current well enough, and so making the doping techniques more effective has long been a focus for achieving better polymer-based electronics. Now, this doubling of the conductivity of polymers, while using only the same amount of dopant material, over the same surface area as before, could represent the tipping point needed to allow several emerging technologies to be commercialised.

“With OLED displays, the development has come far enough that they are already on the market. But for other technologies to succeed and make it to market something extra is needed. With organic solar cells, for example, or electronic circuits built of organic material, we need the ability to dope certain components to the same extent as silicon-based electronics. Our approach is a step in the right direction,” said Christian Müller.

OLED-displays, plastic-based solar cells and bioelectronics are just some of the technologies that are known to benefit from their new discovery, which deals with “double-doped” polymers.

Tags
Show More

Related Articles