By navigating our site, you agree to allow us to use cookies, in accordance with our Privacy Policy.

Fujitsu Boosts Quantum Circuit Computation Speed by 200x

Fujitsu Boosts Quantum Circuit Computation Speed by 200xFujitsu has announced the development of a novel technique on a quantum simulator that speeds up quantum-classical hybrid algorithms, which have been proposed as a method for the early use of quantum computers, achieving 200 times the computational speed of previous simulations. For quantum circuit computations using conventional quantum and classical hybrid algorithms, the number of times of quantum circuit computation increases depending on the scale of the problem to be solved. Larger-scale problems that require many qubits, including simulations in the materials and drug discovery fields, may even require several hundred days.

The newly developed technology enables the simultaneous processing of a large number of repetitively executed quantum circuit computations distributed among multiple groups. Fujitsu has also devised a way to simplify problems on a large scale with less loss of accuracy by using one of the world’s largest-scale quantum simulators it has developed. Fujitsu has made it possible to perform computations on a quantum simulator in just one day, which would take an estimated 200 days to complete with conventional methods. As a result, it is now possible to complete simulations of large-scale quantum computation within a realistic timeframe and to simulate the behavior of larger molecules computed by a hybrid quantum-classical algorithm, leading to algorithm development.

Fujitsu plans to incorporate this technology into its hybrid quantum computing platform to accelerate research into the practical application of quantum computers in various fields, including finance and drug discovery. Additionally, Fujitsu will not only apply this technology to quantum simulators but also to accelerate quantum circuit computations on actual quantum computers.

In response to this problem, Fujitsu has developed a technology that achieves 200 times higher performance speed than conventional technologies by simultaneously distributing multiple repetitively executed quantum circuit computations and reducing the number of quantum circuit computations by reducing accuracy degradation.

Yukihiro Okuno, Senior Research Scientist, Analysis Technology Center, Fujifilm Corporation, said, “We are investigating the application of quantum computers to materials development. Among them, the use of VQE in NISQ devices is an essential consideration. We expect that this acceleration technology will greatly speed up the principle verification of the VQE algorithm.”

Tsuyoshi Moriya, Vice President, Digital Design Center, Tokyo Electron Limited, said, “We are studying the use of VQE to calculate the energy of molecules related to semiconductor materials, to predict the electronic structure and physical properties of specific materials, and to optimize chemical reactions in semiconductor manufacturing processes. We hope that accelerating this process will enable us to quickly verify the principle and effectiveness of the VQE algorithm and discover its usefulness. NISQ devices whose use is limited by noise and errors will be considered with an eye toward these limitations.”

Tags

Abdullah Ansari

Journalism graduate with a flair for technology and electric vehicles, dedicated to crafting insightful articles that bridge innovation and communication. Passionate about shaping narratives in the fast-evolving world of tech.

Related News

Upcoming Events