By navigating our site, you agree to allow us to use cookies, in accordance with our Privacy Policy.

Fujitsu unveils 1FINITY T250 to achieve IOWN initiative

Fujitsu unveils 1FINITY T250 to achieve IOWN initiativeFujitsu has developed FUJITSU Network 1FINITY T250, a disaggregation-type optical transmission solution to achieve the IOWN (Innovative Optical and Wireless Network) initiative and has started sales on May 14, 2024. The new solution can easily upgrade the reliability of existing optical networks, thereby enabling the creation of new connectivity services for telecommunications carriers and broadcasting companies in new use cases such as telemedicine and remote construction.

1FINITY T250 is a solution that realizes All-Photonics Network (APN) (3), an end-to-end optical network with higher transmission capacity, lower latency, and lower energy consumption. It is equipped with latency adjustment technology that controls delays and enables hitless switching of paths (4) that connect nodes in optical transmission equipment.

Using 1FINITY T250 to configure a backup line, the risks of line failures caused by factors that are difficult to predict (including natural disasters and accidental equipment failures, and other external factors such as relocation of existing equipment due to road construction) can be eliminated while maintaining network services. It will be possible to switch lines automatically and more stably without causing a line failure, making it possible to provide APN services more safely and securely.

By providing 1FINITY T250, Fujitsu will support the construction and social implementation of optical networks in fields such as telemedicine, remote robotics, and infrastructures such as power transmission network monitoring systems that require high reliability and low latency, as well as continue to contribute to the realization of highly reliable APNs based on the IOWN initiative, where users can enjoy high-quality services.

Various use cases of optical transmission using APN are currently being considered to realize the IOWN initiative, for example, power transmission lines that utilizes optical ground wires (OPGW) (5). While this is economical and easier to maintain, it also carries the risk of signal errors because of the external environment effect such as lightning strikes and electromagnetic interference. Furthermore, even in conventional optical fiber networks, high reliability and low latency are constantly required for manipulation (6) in telemedicine and power transmission network monitoring systems because an accidental failure of network equipment can have a significant impact on services.

To solve these issues, Fujitsu has developed 1FINITY T250, an optical transmission solution equipped with Fujitsu’s own latency adjustment technology that visualizes and controls network delays and fluctuations and enables hitless switching of paths between optical transmission equipment nodes.

Features of Fujitsu Network 1FINITY T2501. Latency adjustment technology maintains high-quality network connections even during failures

1FINITY T250 measures the end-to-end delay of each path connecting nodes of optical transmission equipment and controls the amount of delay so that the delay difference between each path is zero, thereby making the latency (response time) of the entire network consistent. This eliminates the time lag caused by geographical factors in use cases such as remote concerts and game matches between remote locations and ensures fairness.

By applying this latency adjustment technology, for example, in the event of a line failure, it is possible to instantly switch to a backup line, thereby preventing momentary line interruptions and maintaining high-quality network lines.

  1. Visualization and control of delays in optical networks

The delay time between optical network sites is measured and outputted as a log. This allows the path delay time to be controlled in 1-microsecond increments based on the measurement results.

  1. Can be added to existing transponders (7) that transmit and receive optical signals

It has a 1RU (8) chassis size that is designed for open network equipment and supports disaggregation that allows convenient addition of hitless switching functionality to existing optical network configurations. It has an OTU4 interface (9) that can be directly connected to existing transmission equipment. By connecting to the client of the transponder in use that sends and receives optical signals, the existing network can be upgraded to a highly reliable network.

Tags

Garima Sharma

A seasoned writer, a wealth of experience, great attention-to-detail and a strong command on language. Committed to excellence, I leverage my unique perspective and strategic approach to craft impactful narratives that resonate with audiences.

Related Articles

Upcoming Events