To help personalise content, tailor your experience and help us improve our services, uses cookies.
By navigating our site, you agree to allow us to use cookies, in accordance with our Privacy Policy.

How to transit cost-effectively to Brushless DC Motors for Your Applications

The various options of semiconductor integration are opening up an ever-growing array of applications for dis- tributed intelligent small drive solutions based on synchronous motors. These include brushless DC motors (BLDC), permanent magnet synchronous motors (PMSM) and stepper motors. Because of their technical advantages and increased efficiency, these types of motors are replacing brush-type motors in many existing applications. Automobiles are a great example.

Typically automotive components must support  low  system  cost,  small,  light and reliable, and show a high degree of efficiency. It is also important to reduce exhaust emissions and lower the fuel consumption. The need for drive con- cepts that work with a wide range of motors, and the extreme demands made on efficiency, system design and network- ing options have major impact upon the actuator electronics.

The BLDC motor market

Table 1: Summary of brushless DC motor advantages

BLDC Motor Advantage Description
Smaller motor geometry and lower weight Powerful permanent magnets in the rotor and the miss- ing brush mechanism enable BLDC motor to be smaller and lighter compared to both brush-type DC motors or induction AC motors.
Enhanced motor efficiency No core losses in the rotor due to the usage of per- manent magnets. The motor efficiency can be further enhanced with dedicated commutation algorithms.
Thermal performance The motor windings as heat generating elements are outside of the motor (in-runner) allowing a better thermal coupling.
High motor speed range BLDC motors have no brush system which limits the speed. They have been designed for speeds > 100,000 RPM (e.g. dental drill). Low speed control is easier with appropriate commutation algorithms.
Enhanced motor dynamic response time The rotor inertia is lower compared to a brush-type DC motor carrying the copper windings in the rotor.
No motor maintenance and long lifetime No replacement or inspection of the commutator system is needed.
Lower Radio Frequency Interference (RFI) for better EMC Unlike brush-type DC motors there is no brush system inside BLDC motors causing RFI.
Commutation control The commutation electronics can be used for various commutation schemes and can be tailored to the sys- tem/motor by software without cost adder. This allows also a good control of torque behavior (e.g. by adjusting the commutation angle).
“Intelligent motor” with self-diagnostic functions The integrated electronics can provide programmable diagnostic functions, e.g. allowing identification of mo- tor characteristics for automatic adjustment of system parameters.

There are plenty of BLDC manufacturers in the US. Most companies are  still focused on motor technology like brush- type DC motors, stepper motors,  etc. But many of them are establishing the BLDC motor as a basis  for  new  prod- uct developments.  Even  though   there are many  BLDC  motor  manufacturers in place, especially for the tiny BLDC motors, there are not so many integrated control electronic solutions on the market. Companies capable to manufacture BLDC motors with integrated intelligent elec- tronics inside, together with a low cost approach are still not easy to find.

The level of adoption of BLDC motor technology is increasing. Many auto- motive functions such as fuel or water pumps, HVAC (Heating Ventilation  and Air Conditioning), curve light, head-lamp levelling, and many others,  are  convert- ing from brush-type DC motor  or  step- per motor technology to BLDC motor technology.  Yes,  this  is  not  a  general proof that all brush DC or stepper motors will convert to BLDC motor  technology. But the main argument that the elec- tronic to control the motor is too expen- sive compared to the price of the motor itself is becoming less valid every day. Furthermore, the BLDC motor advantages can significantly enhance other system properties (refer to the Table 1). Hence it can be foreseen an evolution to intelligent motion control.

Brushless DC motor advantage

BLDC motors have  several  advantag- es over competing motor technologies, summarized in Table 1.

Problems of the transition from brush- type DC motors towards BLDC motors?

When looking at motion control systems including brush-type DC motors (BDC), it is obvious, that control is less complex compared to a BLDC motor. In simple words: you have only to apply a voltage to the  motor  and it  starts  to move. Engineers with little experience in BLDC motor control system design often fear that they will  have  difficulty  converting to BLDC motor technology, even though they know about the advantages. Complex electronics and the program- ming of such a system are thought to be a barrier. Also the higher system cost due to the electronic commutation is often considered as a showstopper.

However, the transition from  BDC  to BLDC is not necessarily difficult. By using the Micronas HVC 4223F single-chip solution the electronic circuit can be quite simple.

In the example below, a solution is out- lined that requires only 13 components, including the HVC 4223F itself. E.g.  if the system includes already a PCB, the impact to the BOM is moderate. In many cases, a smaller motor can be  utilized due to the better efficiency. The actuators can also be smaller further reducing material cost (motor, case, gear, etc.). Furthermore, the BLDC control system with the HVC 4223F can be programmed in a way that it behaves like a BDC motor from outside, comprising only a VBAT and ground supply as connections. Hence, existing motion control systems can be upgraded without changing the complete system design. And in the long term the system can be improved, e.g. with net- working and/or diagnostic functions etc. Customers do not have to start from scratch with software development since the existing application notes and demo software can provide an adequate level of functionality.

A single-chip architecture for maximum system integration and flex- ible drive systems

The new Micronas High-Voltage Controllers (HVC) allow systems with highly  integrated  motor  drive  electronics to achieve the performance potential of modern permanently excited DC motors. The HVC 4223F is an integrated micro- computer system with all necessary peripheral modules for directly driving PMSM/BLDC motors and bipolar step- per motors. The programming  capability of the peripheral modules and the user defined software allow the best possible adaptation to the properties and attributes of different drive systems.

The increasing integration  density  in drive solutions, made possible by  the low power/weight ratio (W/kg) of the PMSM/BLDC motors, affects the power dissipation (power-/thermal management), the flexibility of driving circuit and the selected  drive,  and  also  the  options  for

Table 2: Overview of motor types and modes of operation with the new HVC

Motor type Bridgeconfigurations Operatingmode examples Examples for applications
3-phase PMSM/BLDC motor Bridge can be configured to match the motor phases.

Phase current: 0.6 A (effective) Peak current 1 A

  • Sensored and sensorless six-step commutation with PWM-modulation
  • Space Vector Modula-tion with rotor position measurement, e.g. by Hall sensors via SPI interface.
  • Current measurement possible in all operating modes via an external shunt resistor
  • LED front light fan
  • AGM
  • HVAC
  • Small / auxiliary pumps
  • Optical distance measurement (LiDAR)
  • Light adjustment
  • Bending lights (AFS)
  • Head-up display
  • Mirror adjustment
  • Navigation display adjust- ment
  • Intelligent relays
  • etc.
Bipolar stepper motor Bridge can be configured to match the motor phases.

Phase current: 0.3 A (effective) Peak current 0.5 A

  • Full and semi-step opera- tion
  • Wave drive operation
  • Commuted operation using the Back-EMF com- parators. e.g. for accom- plishing higher rotational speeds.
  • Micro-step operation “Open Loop Voltage Con- trolled” or “Closed Loop Current Controlled“ with programmable current thresholds via D/A con- verter (“Current-Shaping“).
  • The output stage includes circuits for the integrated current measurement for the programmable current thresh-olds. An external shunt is not required.
Brush-type DC motors Depending on the configuration of the bridge, several DC mo- tors can be activated up to a phase current of 0.6 A (effec- tive)
  • Self-commuting
  • Measurement of motor current for control
  • For positioning drives, read-in of encoder/sensor output

diagnosis. The high integration density of the electronics requires adapting the ther- mal operating conditions by means of a target-specified power management. The new HVC family provides many functions which precisely allow this adaptation.

Adjusted motor activation for different applications and operating modes

The use of different drive concepts in automotive actuators requires the easy adaptation of  the  motor  power-bridge and how the bridge is activated. The HVC 4223F precisely addresses this issue with a configurable final output stage, ful- ly integrated and programmable peripheral module,  and  a  powerful  ARM  Cortex® -M3® Core. Six n/n half-bridges (incl. charging pumps) are integrated. These can be adapted to the type of motor by the appropriate wiring circuit of  the  out- put pin and by the configuration of the software.

The EPWM-Module (Enhanced Pulse- Width  Modulation)  supports   passive and active free-wheeling current patterns (“Asynchronous/Synchronous Rectification“) for different operating modes and types of motor (see Table 2). The integrated current measurement and the D/A converters allow the program- ming of nominal current values (e.g. for current-controlled  micro-stepping).  In the PMSM/BLDC motor, without using sensors, the  feedback  signal  of  the rotor position can be sent via  compara- tors and integrated  star-point  references, or alternatively by means of Hall-effect sensors/encoders. Also, the commuted mode of operation for stepper motors can be selected, e.g. for accomplishing higher rotational speeds. Adapting stepper motors  to  different  modes  of  operation (full / semi-step, wave drive, micro-step, commuted operations) is also possible or programmable.

Algorithms for speed and current control can be quickly executed with the ARM Cortex-M3 CPU – supported by the high- speed A/D converter and adjustable signal paths for voltage and current measure- ments. The output stage includes over- load protection (overvoltage / excess cur- rent) and diagnosis functions. The inte- grated peripheral modules for the motor activation (EPWM, comparators, star point reference, D/A converter, diagnosis and overvoltage / excess current protec- tion, temperature monitoring) can be pro- grammed for the  operating  modes  listed in the table.

Efficient system with ARM Cortex-M3 CPU

CPU and flash memory allow extremely high system flexibility by means of soft- ware,  e.g.  for  real-time   requirements for rotational speed and current control, communication in distributed actuator systems (e.g. in LIN clusters) and diag- nosis functions. The main oscillator is already integrated. The CPU cycle  can be stepped down to reduce power con- sumption or power dissipation without affecting peripheral functions. To reduce electromagnetic emission, an EMI reduc- tion module (ERM) is included. All periph- eral modules can be programmed  via the AHB/APB bus system and are so adapted to the system requirements. The integrated NVRAM allows the storage of diagnostic and application data.

For power, the HVC family is supplied directly via the 12-volt on-board electrical system  and  complies  with  the  ISO 7337 test pulses. Start-stop systems are sup- ported by a special “retention mode“. Compared with conventional linear regu- lators, the integrated switching regulator (buck converter) minimizes power losses. Energy-saving modes provide low power consumption, e.g. for Kl.30 applications. External loads (e.g. Hall sensors) can be supplied via a programmable high-side switch.

For communication in distributed small drive systems (e.g. HVAC systems), a LIN-UART and the LIN Physical Layer are integrated in the HVC. Also, a  second LIN pin is available for  use in LIN clus- ters with auto-addressing as, for example, in HVAC valve applications. The described system integration and network capability is an important step on the way to further miniaturization and integration in small and micro-motors.

The reliability of a drive system is cru- cially influenced by the drive electronics used. The architecture of the new HVC includes extensive diagnosis and protec- tive functions with an SPFM greater than 60% (“ASIL ready“). This is important for the decomposition in accordance with ISO 26262 at system level, i.e., also for the assignment of the  safety  and  secu- rity requirements to individual and inde- pendent system elements, and can be carried out at system, hardware, and software level.

The high system integration has  a  posi- tive effect on the required system  FIT (FIT = Failure in Time) rates since the number of components is reduced.

A good example for the flexible diagnosis is the implementation of  a„ ther- mal   managements”   in   the   software.

Electronics integration in the BLDC motor
Fig. 1: Electronics integration in the BLDC motor

By evaluating current and temperature, measures can be taken to adapt to the operating profile, e.g. reducing the CPU cycle, restricting the motor current, adapt- ing the free-wheeling current pattern  in the motor bridge, etc. The small 40-pin  QFN  6×6 mm  package of  the  new  HVC 4223F  is  well  suited for the miniaturization and the  integra- tion of the  electronics  into  the  motor or into the actuator. Also, the “exposed pad“ (ePAD) guarantees a good thermal connection. A junction temperature range of –40 °C to +150 °C and the integrated overtemperature monitoring allow the use in temperature-critical applications.

The small 40-pin  QFN  6×6 mm  package of  the  new  HVC 4223F  is  well  suited for the miniaturization and the  integra- tion of the  electronics  into  the  motor or into the actuator. Also, the “exposed pad” (ePAD) guarantees a good thermal connection. A junction temperature range of –40 °C to +150 °C and the integrated overtemperature monitoring allow the use in temperature-critical applications.

Application example for positioning actuator with BLDC motor

Mechanical actuators for positioning appli- cations usually have to provide a high torque (e.g. in valves, flaps, etc.). Typically a gear is used to obtain low rpm at the load, introducing considerable losses due to friction. In many cases the actuator must apply a stable holding  torque  and the actuator shall not lose  its  last  posi- tion to avoid calibration runs. Due to weight reduction and space  constraints the motor and electronic geometry plays an important role. The example describes a solution for a single-chip motor actuator with the HVC 4223F driving a BLDC motor in sensor-less six-step commuta- tion with a LIN communication interface. Figure 2 shows  the  principle  system  for a valve actuator integrating the complete electronic by the HVC 4223F single-chip solution.

Example system with BLDC-motor
Fig 2: Example system with BLDC-motor

Table 3: Overview of the used peripheral function with the HVC 4223F

Function Sub-function Peripheral Interrupts Remark
Generic system and background tasks Periodic call of software-tasks CPU/Software, Timer/ ARM SYSTICK TIMER or ARM


For execution of periodical tasks
Motor control Motor driving / motor state-ma- chine MOUTx EPWM BEMFC CAPCOM EPWM BEMFC CAPCOM Commutation, PWM modulation, active/passive free- wheeling, Back EMF voltage evaluation („0“-Crossing), 30°-commutation information (CAPCOM Timer, coupled to BEMFC).
RPM and current control Timer or EPWM Timer or EPWM Periodic task within motor state-machine
Motor current measurement ADC EPWM ADC IRQ triggered by EPWM according to current sampling time
Constant current for holding torque generation 8-Bit DAC EPWM -/- Allows the usage on non self-locking gears with better ef- ficiency. The HVCF 4223F comprises a “Current-Limiting” function for this purpose.
Diagnosis and monitoring Stall detection ADC ADC Periodic task via ADC measurement
Under- and over- voltage MON / BVDD


OV/UV interrupt Periodic task  to monitor the supply voltage
Periodic J mea- surement for thermal manage- ment ADC Timer Monitoring of JJ and JA (e.g. by external NTC). Internal temperature sensor can be read by ADC. The external NTC via an LGPIO-port by the ADC.
Monitoring of program flow Digital watch- dog and win- dow-watchdog -/- Monitoring of program flow. Window-Watchdog time-base with independent integrated auxiliary oscillator.
Preservation of diagnostic data NVRAM -/- E.g. for saving periodically changing mission data such as counters or data changing only once like SW version numbers etc.
Communication LIN-bus software stack LIN-UART and


LIN-UART According to the LIN2.x specification.
ADC = Analog-to-Digital Converter, BEMFC = Back Electromotive Force Comparator, CAPCOM = Capture Compare Timer, EPWM = Enhanced Pulse-Width Modulator, LIN = Local Interconnect Network, MON = Supply Monitoring Pin,

EPWM = Enhanced Pulse-Width Modulator, LIN = Local Interconnect Network, MON = Supply Monitoring Pin,

MOUTx = pins of integrated motor-bridge

Hardware – Software interaction and circuit solution

The efficient interaction of HW and SW inside a motion control  system  depends on the distribution of the particular func- tions of the available chip peripherals. Table 3 summarizes a possible approach for the system in Figure 2 with  sensor- less six-step commutation including rpm and current control, functions for diagno- sis and communication stack. The soft- ware architecture can be e.g. a simple round-robin with interrupts.

A basic circuit solution for the system is outlined in Figure 3. The number of exter- nal components for the motor can be reduced to a minimum of 12 components (refer to the table in Fig. 3). In case of special system ESD and/or EMC require- ments, some additional components like ferrite beads etc. might be required, e.g. in the DC supply link or LIN signal path.


The number of small motor driving solu- tions  using  BLDC  motor  technology will grow because  of  the  declining  cost of electronics. The highly integrated single-chip HVC 4223F solution from Micronas is an enabler for this develop- ment.

Adriano De Rosa
Adriano De Rosa, works at Micronas in Freiburg (Germany) in the R&D De- partment as IC Architect

The diversity and functionality of  motors will increase, including networking between intelligent drives. Furthermore, the requirements for  lower  weight, smaller size, higher power density, and lower cost must be met. The  used motors need to be small, light and  are used in distributed LIN bus networks.

The design-in time can be reduced because complete platforms of tiny motors can be developed using a single-chip solution. Tailoring to different motor types and properties can be achieved by means of adapting the soft- ware. Today’s brush-type DC motor solu- tions can be replaced 1:1 by a BLDC motor system, that on the  outside,  look like a conventional motor but inside pro- vide all advantages needed to realize intelligent motion control.

Self-diagnosis and functional safety increasingly play an important role. Drives with “integrated intelligence”  by  means of electronics can provide this diagnostic feature. E.g. the properties of a motor might change over life-time. These effects can be tracked and stored by the elec- tronics and adjusted to a certain extent.

Adapting the software allows a large number  of  functions   and   applications to   be   addressed.  The   customer   can efficiently equip a complete platform of actuators with just one  type  of  control- ler. The small number of discrete compo- nents and the high integration provide a high degree of miniaturization and allow economic solutions with the advantages and benefits of modern types of motors. The high level of reusability of hardware and software permits quick responses to changes in customer requirements.

Principle circuit solution
Fig 3: Principle circuit solution

BiS Team

BIS Infotech is a vivid one stop online source protracting all the exclusive affairs of the Consumer and Business Technology. We have well accomplished on delivering expert views, reviews, and stories empowering millions with impartial and nonpareil opinions. Technology has become an inexorable part of our daily lifestyle and with BIS Infotech expertise, millions of intriguers everyday are finding for itself a crony hangout zone.

Related Articles