By navigating our site, you agree to allow us to use cookies, in accordance with our Privacy Policy.

Microchip Launches Industry’s First Ethernet Transceiver

Microchip Technology has  announced the industry’s first space-qualified Ethernet transceiver – a radiation-tolerant device based on a Commercial Off-the-Shelf (COTS) solution widely deployed in other industries now offering reliable performance for applications ranging from launch vehicles to satellite constellations and space stations.

MicrochipIn addition to Microchip’s new VSC8541RT radiation-tolerant Ethernet transceiver sampling, the company received final qualification for the new SAM3X8ERT radiation-tolerant microcontroller, its latest Arm Cortex-M3 core processor and embedded Ethernet controller.

These are designed to support space industry demand for radiation tolerant devices separately or in combination.

Both devices are COTS-based parts with enhanced characterized levels of radiation performance and high reliability quality flow, available in plastic and ceramic packages. They share the same pin-out distribution, allowing designers to begin implementation with COTS devices before moving to space-grade components. This significantly reduces development time and cost.

“As the first to provide both a rad-tolerant transceiver and an enhanced rad-tolerant microcontroller for the rapidly-expanding, high-reliability Ethernet market, Microchip continues to support space industry developments and evolution with qualified and proven solutions,” said Bob Vampola, associate vice president of Microchip’s aerospace and defense group. “Microchip’s COTS-based space-grade processing provides the right performance and the right level of qualification to meet evolving requirements from Low-Earth Orbit constellations to deep space missions.”

These latest devices are among Microchip’s broad suite of COTS-based radiation tolerant microelectronics supporting Ethernet connectivity to be used aboard satellite platforms, payloads for data and sensor bus control, remote terminal communication, space vehicle networks, and module connectivity in space stations.

The VSC8541RT transceiver is a single-port Gigabit Ethernet copper PHY with GMII, RGMII, MII and RMII interfaces. Radiation performances have been verified and documented in detailed reporting. The VSC8541RT is latch-up immune up to 78 Mev; TID has been tested up to 100 Krad. With the same rad-tolerant die and package, a 100 MB limited bitrate performance VSC8540RT is also available in plastic and ceramic qualified versions, which provides performance and cost scalability for targeted missions.

The SAM3X8ERT radiation-tolerant MCU implements on a System on Chip (SoC) with the widely-deployed Arm Cortex-M3 core processor, delivering 100 DMIPS benefits from the same ecosystem as the industrial variant.

These latest devices complement Microchip’s suite of radiation-tolerant and radiation-hardened hardware processing solutions. With the SAMV71Q21RT Arm M7 MCU up 600DMIPS and ATmegaS128/64M1 8-bit MCU series, all share the same development tools.

For more info, click here

Tags

Nitisha Dubey

A diligent writer, who has been working from last five years in the same field. She has covered lots of event and expo for travel & judiciary, now covering technology. Book reading, exploring different destinations and varieties of cuisine are some hobbies. Love to watch biographies and historical movies.

Related Articles