By navigating our site, you agree to allow us to use cookies, in accordance with our Privacy Policy.

NEC advances Biometric Technology to Distinguish Individual ear cavity shape through Sound

Biometric Technology

NEC Corporation announces the development of a unique biometric personal identification technology that uses the resonation of sound determined by the shape of human ear cavities to distinguish individuals.

The new technology is claimed to instantaneously measure acoustic characteristics determined by the shape of the ear, which is unique for each person, using an earphone with a built-in microphone to collect earphone-generated sounds as they resonate within ear cavities. This unique method for extracting features is useful for distinguishing individuals based on acoustic characteristics and enables rapid and highly accurate recognition (greater than 99% accuracy).

Expected to hit the market by FY2018, this new technology can be a game-changer for a wide range of applications, including the prevention of identity fraud in operations related to safety and security, such as in maintenance, management, and security of critical infrastructure, in ensuring confidentiality of wireless communications and telephone calls, and in voice guidance services designed for particular individuals or particular scenarios

“Since the new technology does not require particular actions such as scanning a part of the body over an authentication device, it enables a natural way of conducting continuous authentication, even during movement and while performing work, simply by wearing an earphone with a built-in microphone to listen to the sounds within ears,” said Shigeki Yamagata, general manager, Information and Media Processing Laboratories, NEC Corporation.

Key features

Instantaneous and stable measurement of individually unique acoustic characteristics of the human ear
An earphone with a built-in microphone is used to generate a few hundred milliseconds of acoustic signals from the earphone speaker and to receive the signals transmitted within the ear through the microphone. During this process, a synchronous addition method, which adds and obtains the average of the waveforms of the multiple signals received, is used to eliminate noise from the received signals. It then calculates how the sound resonates within the ear (acoustics). These steps are carried out instantaneously (within one second), enabling a stable and rapid means for measuring individually unique acoustic characteristics.

Image 1 Caption: The measurement of unique acoustic characteristics

Extraction of features based on the unique structure of the human ear to achieve accurate recognition
The extraction of feature values from the acoustic characteristics is based on the knowhow from NEC’s advanced biometrics recognition technologies, which have been proven to be the world’s most accurate. Since the shape and size of the ear are unique for each person, these acoustics-based features can be used in distinguishing individuals. Results of experiments have shown that, in particular, the signal components that travel through the external ear canal and are reflected by the tympanic membrane, as well as those signal components that pass through the tympanic membrane and are reflected within the inner parts of the ear, are both important for recognition. Thus, extracting feature values from these two types of signal components has enabled recognition operations with minimal computational complexity, realizing stable and highly accurate recognition (greater than 99% accuracy).

NEC Biometric


BiS Team

BIS Infotech is a vivid one stop online source protracting all the exclusive affairs of the Consumer and Business Technology. We have well accomplished on delivering expert views, reviews, and stories empowering millions with impartial and nonpareil opinions. Technology has become an inexorable part of our daily lifestyle and with BIS Infotech expertise, millions of intriguers everyday are finding for itself a crony hangout zone.

Related Articles

Upcoming Events