By navigating our site, you agree to allow us to use cookies, in accordance with our Privacy Policy.

Rohde & Schwarz and Greenerwave Partner for 6G RIS Module Research

Reconfigurable intelligent surfaces (RIS) draw attention in the wireless industry due to their potential for an efficient 5G mmWave rollout as well as future 6G applications. A measurement campaign by Rohde & Schwarz and Greenerwave recently characterized the configurable radio wave reflection properties of a novel FR2 RIS module developed by Greenerwave with an over-the-air (OTA) antenna test system from Rohde & Schwarz. It is one of the first real measurements confirming that a metamaterial-based RIS can improve the coverage and efficiency of wireless communications performance, especially for 5G FR2. The groundbreaking work will pave the way for further 6G developments.

Reconfigurable intelligent surfaces (RIS) promise to revolutionize wireless communications. RIS is a key technology for 6G networks, which must be more efficient than 4G LTE or 5G NR in every way. RIS technology uses metamaterials to control the otherwise random radio environment. Metamaterials are the key to fulfilling the promise of RIS. The materials enable unprecedented control over EM waves by manipulating the impedance on a subwavelength scale and have led to significant breakthroughs in imaging, radar, and wireless communications.

Rohde & Schwarz test and measurement instruments were used to characterize an FR2 RIS from Greenerwave for the recent test campaign. Testing RIS modules requires a test environment that can be illuminated from different incident angles while simultaneously measuring signals at multiple angles. A wireless performance test chamber (WPTC) from Rohde & Schwarz was used for over-the-air (OTA) measurements. A holder was specifically designed for the feed antenna illuminating the Greenerwave RIS.

The RIS from Greenerwave uses a metamaterial proprietary technology. The RIS is an electronic device, composed of many layers and a surface inlaid with a set of patch antennas, called pixels or unit cells, whose electromagnetic responses can be controlled via a control board. The module operates in 5G FR2 and beyond, covering a bandwidth of 25-30 GHz with an instantaneous bandwidth of 2 GHz. The module comes with separate polarization control, beam scanning from -60 to 60 degrees, and beam width as narrow as 3 degrees.

Tags

Vidushi Saxena

Passionate journalist with a Bachelors in Journalism and Mass Communication, dedicated to crafting compelling news articles and avidly exploring the dynamic world of current affairs through insightful blog readings. Embracing the power of words to inform and inspire.

Related News

Upcoming Events