STMicroelectronics Presents Stellar Automotive Microcontrollers (MCUs)
STMicroelectronics has reported further details of its innovative Stellar automotive microcontrollers (MCUs) to show how the devices ensure reliable and deterministic execution of multiple independent real-time applications.
“We have set up Stellar’s functionality to cover integration challenges, while maintaining isolation and compartmentalization,” said Axel Aue, Vice President, Bosch. “The computing performance for this kind of system is outstanding, with Phase Change Memory performance equal to, or surpassing, that of alternative Flash technologies. Moreover, Stellar’s performance concerning Firmware Updates Over-the-Air (FOTA) has been flawless with zero down time and zero recovery time.”
“We designed Stellar to meet the demands of future Domain/Zone architectures and service-oriented communication needs, setting aggressive real-time performance, safety, and determinism goals,” said Luca Rodeschini, Strategy & Automotive Processors and RF Division General Manager, STMicroelectronics. “The setup, evaluations and validations performed by Bosch now provide expert confirmation, showing that our teams’ integration of outstanding real-time performance, embedded PCM non-volatile memory, and comprehensive virtualization ensure efficient software isolation and compartmentalization that will add to consumers’ safety and convenience in their vehicles.”
Pioneering this new class of controllers, Stellar Integration MCUs are designed with exceptional computing power to significantly simplify the concurrent and deterministic execution of multiple-sourced software while guaranteeing the highest levels of safety and performance. These capabilities meet system requirements in the electrics/electronics (E/E) architecture of the next generation of connected cars.
ST has developed this new technology with Bosch, the well-known tier-one automotive electronic module supplier, to meet future OEM integration demands.
Stellar embeds multiple Arm Cortex-R52 cores — some operating in lockstep and some in Split/Lock – and features a 2-level Memory Protection Unit and a low-latency Generic Interrupt Controller. The MCU is suited to hard real-time applications up to the highest safety integrity level, ASIL-D, specified in the automotive functional-safety standard, ISO 26262. There are also multiple powerful accelerators for secure data routing, processing, and mathematical functions, with advanced security support and extensive communication command and control.