By navigating our site, you agree to allow us to use cookies, in accordance with our Privacy Policy.

UltraSoC and Canis Labs Partner to Secure the CAN Bus

UltraSoC and Canis Automotive Labs has recently announced a partnership that addresses one of the most serious cybersecurity vulnerabilities in the automotive industry: the lack of security features within the CAN bus, which is commonly used to interconnect in-vehicle systems such as brakes, steering, engine, airbags, door locks, and headlights.

UltraSoCThe partnership between the two companies will yield hardware-based intrusion detection and mitigation techniques for common exploits on the CAN bus.

These include automatic hardware anti-spoofing; defence against bit-level attacks such as the Bus-Off attack and bit-glitching; and resistance to denial of service (DoS) style attacks.

The collaboration centers on the deployment of Canis Labs’ CAN-HG technology, a new fully-compatible augmentation of the standard CAN bus protocol that includes bus guardian security features, and has the added benefit of being able to carry payloads twelve times larger than standard CAN frames.

When combined with UltraSoC’s semiconductor IP for detection and mitigation of cyber threats, CAN-HG allows designers to secure their CAN bus designs at the hardware level. The cybersecurity capabilities enabled by the collaboration employ fast bits within the CAN-HG augmented part of a CAN frame to add security information to CAN frames.

This can be used by UltraSoC’s protocol-aware monitoring hardware to identify and block suspicious or unauthorized traffic traveling over CAN. These new capabilities will be refined and proved for deployment as part of Secure-CAV: an ambitious project that seeks to improve the safety and security of tomorrow’s connected and autonomous vehicles (CAVs).

Aileen Ryan, UltraSoC CSO, commented: “Automotive cybersecurity requires an ecosystem approach. We’re delighted to add Canis Labs to our list of partners working in this area, which already includes NSITEXE-DENSO and Agile Analog; as well as our partners in the Secure-CAV project, Copper Horse and the Universities of Coventry and Southampton. Up to now the industry has been forced to use sticking plaster solutions to defend CAN interconnect, relying on software techniques or perimeter security. Incorporating Canis Labs’ innovative CAN-HG technology into UltraSoC’s products allows us to secure the vehicle ‘from the inside out’: within the underlying electronic hardware.”

Ken Tindell, Canis Labs’ CTO, added: “The most effective way to protect a CAN bus from attacks is to deploy a hardware security device – or better still, use semiconductor IP to incorporate hardware protections into the underlying system. We believe that the combination of UltraSoC and Canis Labs IP provides a robust solution to CAN security, which is one of the most pressing problems for any CAN bus user – whether they are in automotive, aerospace, or any other industry sector.”

CAN is a hugely successful interconnect protocol which emerged in the 1980s in response to the need for an efficient, lightweight interconnection method that could cope with the harsh environments found in vehicles. Today it remains a common choice not only in the automotive industry but also in industrial, cyberphysical and robotics applications, where safety is paramount. But while it is physically robust, CAN is almost entirely lacking in cybersecurity features.

Tags

Nitisha Dubey

I am a Journalist with a post graduate degree in Journalism & Mass Communication. I love reading non-fiction books, exploring different destinations and varieties of cuisines. Biographies and historical movies are few favourites.

Related Articles