By navigating our site, you agree to allow us to use cookies, in accordance with our Privacy Policy.

A Soft Robot that Works without Electricity

A four-legged robot has been developed by the University of California San Diego’s engineers, which doesn’t need any electronics to work. It will require only a constant source of pressurized air for all its functions, including its controls and locomotion systems.

Soft-RobotThe robot is equipped with three valves acting as inverters that cause a high pressure state to spread around the air-powered circuit, with a delay at each inverter.

Each of the robot’s four legs has three degrees of freedom powered by three muscles. The legs are angled downward at 45 degrees and composed of three parallel, connected pneumatic cylindrical chambers with bellows. When a chamber is pressurized, the limb bends in the opposite direction. As a result, the three chambers of each limb provide multi-axis bending required for walking. Researchers paired chambers from each leg diagonally across from one another, simplifying the control problem.

Applications include low-cost robotics for entertainment, such as toys, and robots that can operate in environments where electronics cannot function, such as MRI machines or mine shafts. Soft robots are of particular interest because they easily adapt to their environment and operate safely near humans.

Most soft robots are powered by pressurized air and are controlled by electronic circuits. But this approach requires complex components like circuit boards, valves and pumps — often outside the robot’s body. These components, which constitute the robot’s brains and nervous system, are typically bulky and expensive. By contrast, the UC San Diego robot is controlled by a light-weight, low-cost system of pneumatic circuits, made up of tubes and soft valves, onboard the robot itself. The robot can walk on command or in response to signals it senses from the environment.

“With our approach, you could make a very complex robotic brain,” said Tolley, the study’s senior author. “Our focus here was to make the simplest air-powered nervous system needed to control walking.”

Tags

Nitisha Dubey

I am a Journalist with a post graduate degree in Journalism & Mass Communication. I love reading non-fiction books, exploring different destinations and varieties of cuisines. Biographies and historical movies are few favourites.

Related Articles